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Lecture 19

Architectural Performance Comparisons

ADC Design



Dynamic Current Source Matching

• Correct charge is stored on C to make all currents equal to IREF

• Does not require matching of transistors or capacitors

• Requires refreshing to keep charge on C

• Form of self-calibration

• Calibrates current sources one at a time

• Current source unavailable for use while calibrating

• Can be directly used in DACs (thermometer or binary coded)

• Still use steering rather than switching in DAC
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Often termed “Current Copier” or “Current Replication” circuit
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Noise in DACs
Resistors and transistors contribute device noise but 

what about charge redistribution DACs ?

Review from Last Lecture
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Example:  First-Order RC Network
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Example:  First-Order RC Network
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From a standard change of variable with a trig identity, it follows that 

• Note the continuous-time noise voltage has an RMS value that is independent 

of R

• The noise contributed by the resistor is dependent only upon the capacitor 

value C

• This is often referred to at kT/C noise and it can be decreased at a given T  

only by increasing C

Review from Last Lecture
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Example:  Switched Capacitor Sampler 
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Example:  Switched Capacitor Sampler 

Vn(kT) is a discrete-time sequence obtained by sampling a continuous-time noise waveform
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Theorem If V(t) is a continuous-time zero-mean noise source 

and <V(kT)> is a sampled version of V(t) sampled at times T, 2T, ….   

then the RMS value of the continuous-time waveform is the same as 

that of the sampled version of the waveform.  This can be expressed 

as
RMS RMS

ˆV V

Theorem If V(t) is a continuous-time zero-mean noise signal and 

<V(kT)> is a sampled version  of V(t) sampled at times T, 2T, ….   then the 

standard deviation  of the random variable  V(kT), denoted as  

satisfies the expression
V̂



ˆ RMS RMSV

ˆ  V V
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For the same total resistor area and the same resolution, how do these 

structures compare from a statistical characterization viewpoint?

Architectural Performance Characterizations



Relative Statistical Characterization of R-based DACs
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Relative Statistical Characterization of R-based DACs

For the same total area and the same resolution, how do these structures 

compare from a statistical characterization viewpoint?

Resolution = 10     

AρR = 0.02µm

Rnom = 1000  

Area Unit Resistor = 2µm2

Resistor Sigma= 14.1421 

INLtarget =  0.5000 LSB   

Simulation environment:

Yield:  Must meet INL target



Relative Statistical Characterization of R-based DACs
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Relative Statistical Characterization of R-based DACs
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Relative Statistical Characterization of R-based DACs
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Relative Statistical Characterization of R-based DACs
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Relative Statistical Characterization of R-based DACs
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Resolution = 10     

AρR = 0.02µm     

Rnom = 1000  

Area Unit Resistor = 2µm2

Resistor Sigma= 14.1421 

INLmean = 0.385 LSB      

INLsigma =  0.118 LSB

DNLmean = 0.049 LSB     

DNLsigma = 0.0047 LSB

Yield (%) = 84.0 



Relative Statistical Characterization of R-based DACs

INLk for four random implementations

Binary Weighted DAC



Relative Statistical Characterization of R-based DACs

Binary Weighted DAC

INL histogram for 100,000 random implementations



Relative Statistical Characterization of R-based DACs

Binary Weighted DAC

INLkMAX histogram for 100,000 random implementations



Relative Statistical Characterization of R-based DACs

Binary Weighted DAC

DNL histogram for 100,000 random implementations



Relative Statistical Characterization of R-based DACs

Binary Weighted DAC

Summary

Resolution = 10     

AρR = 0.02µm     

Rnom = 1000  

Area unit resistor=2µm2

Resistor Sigma= 14.1421

INLmean = 0.367LSB     

INLsigma =  0.128 LSB

INLkmax_mean = 0.00013 LSB  

INLkmax_sigma =  0.226 LSB 

DNLmean = 0.470 LSB  

DNLsigma =  0.228 LSB

INLtarget =    0.500 LSB  

Yield (%) =   84.9



Relative Statistical Characterization of R-based DACs

R-2R  DAC
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Relative Statistical Characterization of R-based DACs
INLk for four random standard series implementations

R-2R  DAC
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Relative Statistical Characterization of R-based DACs

R-2R  DAC
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Relative Statistical Characterization of R-based DACs

R-2R  DAC
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Relative Statistical Characterization of R-based DACs

R-2R  DAC
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Summary  Standard Series

Resolution=10     

AρR=0.02 µm    

Rnom = 1000         

Base Res Area(um^2)=2  

Res Sigma=14.1421

INLmean = 0.609 LSB        

INLsigma =  0.295 LSB 

DNLmean = 1.021 LSB

DNLsigma =  0.610 LSB 

INLkmax_mean = 0.00017 LSB  

INLkmax_sigma =  0.566 LSB 

Yield INL Bound=0.5 LSB

Yield= 41.4% 



Relative Statistical Characterization of R-based DACs
INLk for four random standard parallel implementations
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Relative Statistical Characterization of R-based DACs

R-2R  DAC
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Relative Statistical Characterization of R-based DACs

R-2R  DAC

R
R

R

b
1

b
2

b
3

2
R

2
R

2
R

R

V
R

E
F

b
1

b
2

b
3

R
F

V
O

U
T

I
I2

2 I2

DNL histogram for 100,000 random implementations Standard Parallel



Relative Statistical Characterization of R-based DACs

R-2R  DAC
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Summary  Standard Parallel

Resolution = 10     

AρR = 0.02µm     

Rnom = 1000  

Base Resistor Area(um^2) = 2 

Resistor Sigma= 14.1421 

INLmean = 0.737 LSB     

INLsigma =  0.357 LSB 

INLkmax_mean = 0.0045 LSB    

INLkmax_sigma =  0.680 LSB 

DNLmean =    1.225 LSB

DNLsigma =     0.732 LSB

INLtarget =    0.5 LS

Yield =28.5%



Why is the Standard Series yield significantly larger 

than the Standard Parallel?
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Yield =28.5%

Yield= 41.4% 

Standard  Series

Each bit slice has the same area

MSB resistor has higher percentage of area in Standard Series

MSB Resistor



Relative Statistical Characterization of R-based DACs

R-2R  DAC
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Relative Statistical Characterization of R-based DACs

R-2R  DAC
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Scaling Factor:  1.7



Relative Statistical Characterization of R-based DACs

R-2R  DAC
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Relative Statistical Characterization of R-based DACs

Resolution = 10     

AρR = 0.02µm     

Rnom = 1000  

Total Area  2048 µm2

Resistor Sigma= 14.1421 

INLtarget =    0.5 LSB

Yield =28.5%



Calibration of DACs

• The area required to get acceptable performance of a DAC if often too 

large to be practical

• Large DAC area invariably increased power dissipation

• Large DAC area invariably limits speed of a DAC

• Calibration is often used to improve the linearity of a DAC

• Calibration requires area overhead but it is often less than the area 

overhead that is required to improve yield using area alone 

• Benefits of using calibration are limited to the inherent noise in a DAC 

and calibration does not improve random noise (but can reduce 

quantization noise)
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Calibration of DACs
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DACn1
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• If CAL DAC is driven by appropriate information in RAM, it can 

correct for nonlinearities in ADC

• Resolution of CAL DAC can be small if IDAC is modestly linear

• Code in ROM can be programmed at test or during production





Higher-resolution DACs make extensive use of calibration or self-calibration

• Calibration corrects for nonlinearities (either discontinuities or 

smooth nonlinearities)

• Better high frequency performance

• Smaller die area

• Lower power dissipation

• Often more practical to calibrate for combined effects of all 

nonlinearities rather than correct the source of individual 

nonlinearities 



Recall the MDAC



Dividing DACs 



Multiplying and Dividing DACs

Can create various nonlinear relationships with MDACs and Op Amps 



ADC Design



Analog to Digital Converters
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Analog to Digital Converters

The conversion from analog to digital in ALL ADCs is 

done with comparators

ADC design is primarily involved with designing 

comparators and embedding these into circuits that 

are robust to nonideal effects
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Over-Sampled

Quantizer  Levels

Effective Decimated 

Quantizer  Levels

Sampling Clock

Effective Sampling Clock

Over-sampling ratios of 128:1 or 64:1 are common

Dramatic reduction in quantization noise effects

Limited to relatively low frequencies



Data Converter Type Chart
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ADC Types

• Flash

• Pipeline

• Two-Step Flash

• Multi-Step Flash

• Cyclic (algorithmic)

• Successive Approximation

• Folded

• Dual Slope

• Single-bit

• Multi-bit

• First-order

• Higher-order

• Continuous-time 

Nyquist Rate Over-Sampled



Nyqyist Rate Usage Structures
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Flash is the least used as a stand-alone structure but widely used as a 

subcomponent in SAR and Pipelined Structures



ADC Types

• Flash

• Pipeline

• Two-Step Flash

• Multi-Step Flash

• Cyclic (algorithmic)

• Successive Approximation

• Folded

• Dual Slope

• Single-bit

• Multi-bit

• First-order

• Higher-order

• Continuous-time 

Nyquist Rate Over-Sampled

All have comparable 

conversion rates

Basic approach in all is very 

similar



Flash ADC
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Flash ADC

Basic structure has thermometer 

code at output

Performance Issues:

+ Very fast

+ Simple architecture

+ Instantaneous output

− Bubble vulnerability

− Input change during conversion

− Offset of comparators

− Number of components and area (for large n)

− Speed of comparators

− Loading of VREF and VIN

− Propagation of VIN and Kickback

− Power dissipation (for large n)

− Layout of resistors

− Voltage and temperature dependence of R’s

− Matching of R’s
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Flash ADC
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Bubble Removal Approach



Flash ADC

R

R

R

R

R

VREF

n

XOUT

VIN

T
h

e
rm

o
m

e
te

r 
to

 B
in

a
ry

 D
e

c
o

d
e

r

Another Bubble Removal Approach

R

R

R

R

R

VREF VIN

R

R

R

d1

d2

d3

Bubble 

Removal Thermometer to Binary 

Converter



Flash ADC

Basic structure has thermometer 

code at output

Performance Issues:

+ Very fast

+ Simple architecture

+ Instantaneous output

− Bubble vulnerability

− Input change during conversion

− Offset of comparators

− Number of components and area (for large n)

− Speed of comparators

− Loading of VREF and VIN

− Propagation of VIN and Kickback

− Power dissipation (for large n)

− Layout of resistors

− Voltage and temperature dependence of R’s

− Matching of R’s
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Front-End S/H can mitigate effects of input change during conversion

S/H ADC
FlashXIN

n

XOUT

CLKA CLK

- Speed of sample/hold of concern

- Noise of S/H

- Nonlinearity of S/H

- Input range of S/H

- Power dissipation of S/H

- Loose asynchronous operation of ADC

- Widely used

- S/H may be most challenging part of design

Input change during conversion



Flash ADC with Front-End S/H

Input change during conversion
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Flash ADC with Front-End S/H

Input change during conversion

Input S/H with Clk Input S/H with Clk and clocked comparators
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End of Lecture 19


